WP2 – Machine learning enzyme bio-prospecting integrated into an industrial context

FuturEnzyme Technologies of the FUTURe for low-cost ENZYMEs for environment-friendly products

FuturEnzyme: 2nd annual meeting Start date: 1 June 2021 - End date: 31 May 2025 Proposal number: 101000327 - Consortium: 16 partners Requested EU Contribution: 5,995,035.13 €

Project funded by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No [101000327]

WP2 - Machine learning enzyme bio-prospecting integrated into an industrial context

OBJECTIVE

To pre-select enzymes meeting products' requirements by bioinformatics and supercomputing pipelines:

- Public and consortium sequence repositories
- Knowledge of the needs and requirements of manufacturing companies
- Meta-data analysis

TASKS

- Compile the on-demand manufacturers' needs and specifications (M1 M6) (TASK 2.1)
- Pre-selecting candidate sequences through extensive homology search (M1 M48) (TASK 2.2)
- Motif buildup for massive and smart search of enzymes fitting manufacturers' needs (M1 M42) (TASK 2.3)
- Iterative and decision-making hierarchical procedure for speed up enzyme discovery (M3 M48) (TASK 2.4)

M1	M 6	M12	M18	M24	M30	M36	M42	M48
	Task 2.1						Task 2.3	Task 2.2

вѕс

hhu Heinrich Heine Universität Düsseldorf

Ĥ

BANGOR

UН

WP2 - Partners involved

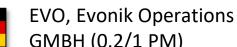
WP2 lead

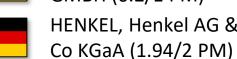
BSC, Barcelona Supercomputing Center (11.45/32 PM)

WP2 contributing partners

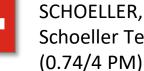
.

CSIC, Agencia Estatal Consejo Superior de Investigaciones Científicas (1.61/3 PM)


UDUS, Heinrich-Heine Universitaet Duesseldorf (0.68/1 PM)

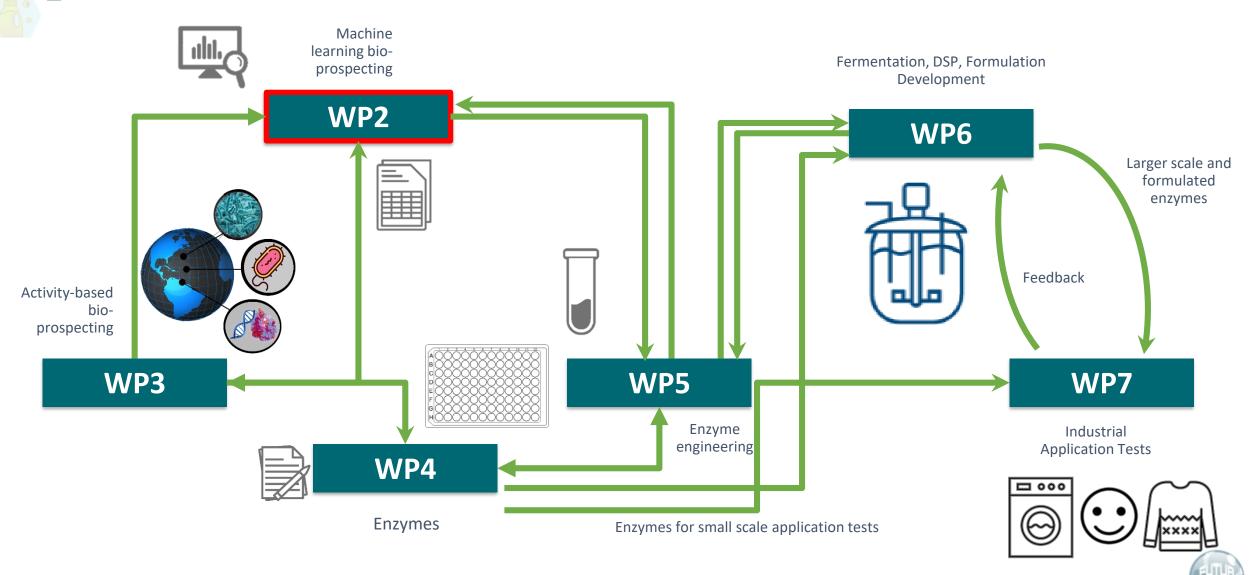


UHAM, Universitaet Hamburg (0/6 PM)


BANGOR, Bangor University (0/2 PM)

GMBH (0.2/1 PM) HENKEL, Henkel AG &

Schoeller Textil AG (0.74/4 PM)



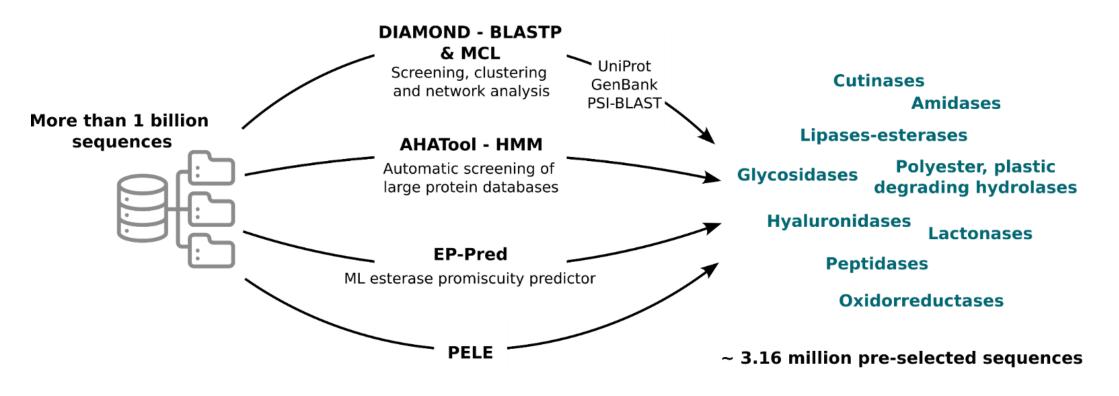
WP2 - Interactions

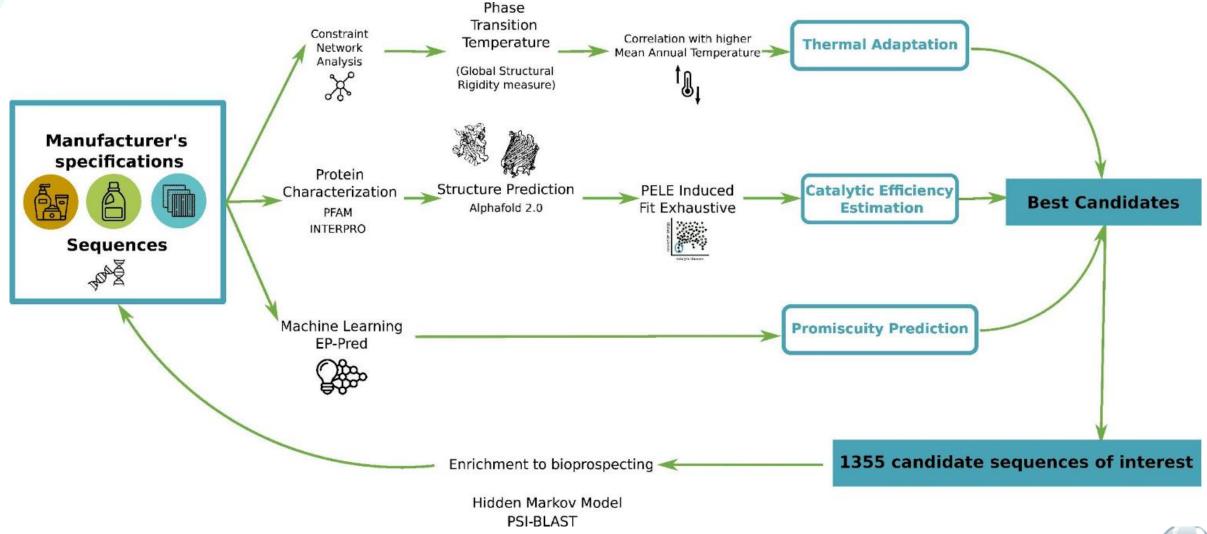
WP2 - Machine learning enzyme bio-prospecting

WORK DONE M1-18

- Task 2.1: Detailing the manufacturers' needs, specifications and priorities and a state-of-art analysis:
 - 1) Products, requests and innovations
 - 2) Priority enzymes to be targeted
 - 3) Specifications that enzymes should meet
 - 4) Decision taken strategies
- Task 2.2: Implementing and using at least five bioinformatics and computational methods to bio-prospect for (+250,000), and pre-select the target enzymes (+1,000) from:

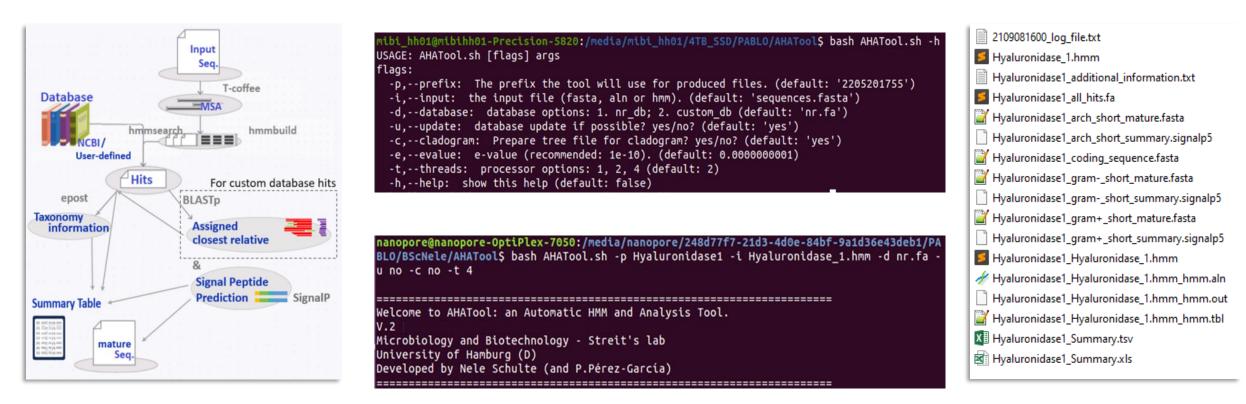
COMPLETED


- 1) +900 Giga-bytes and +400 million sequences generated in the project
- 2) +1 Billion sequences in public repositories
- Tasks 2.3-2.4: Development of novel algorithms and biocontainers for enzyme bio-prospecting through:
- 1) Integrating experimental meta-data (WP4 & WP5) and motif buildup to search for enzymes fitting manufacturers' needs
- 2) Establishing novel consensus machine learning predictors and core software


Progress undertaken and outputs achieved M1-M18

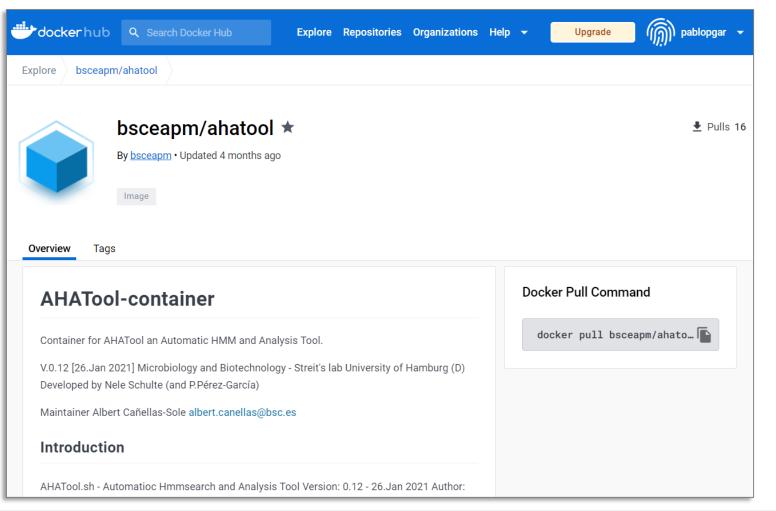
- Pre-selecting candidate sequences through extensive homology search
 - After screening more than 1 billion sequences, about 3.16 million sequences encoding target enzymes were retrieved and pre-selected.

Progress undertaken and outputs achieved in M1-M18



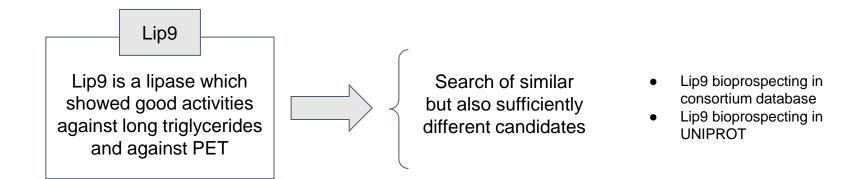
Progress undertaken and outputs achieved in M1-M18

Development of AHA-tool, an HMM tool to find new enzymes


https://hub.docker.com/r/bsceapm/ahatool

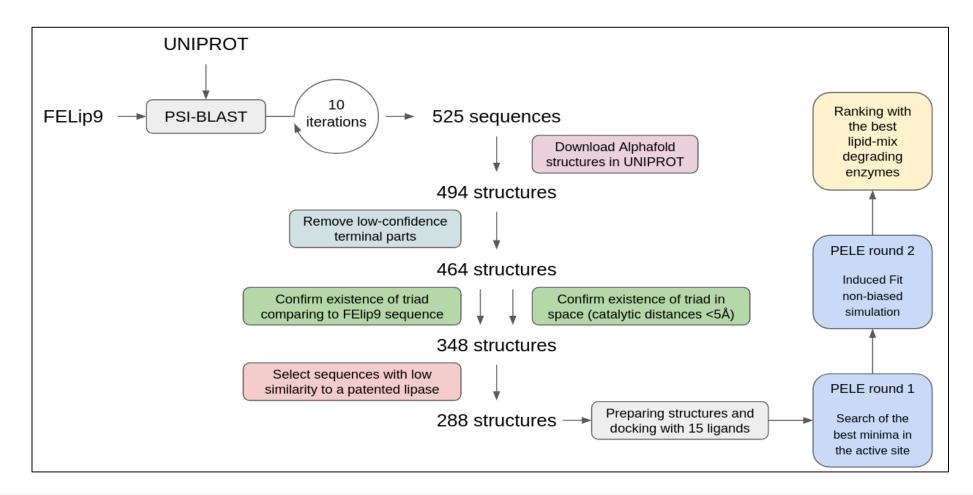
Progress undertaken and outputs achieved M18-M24

Development of AHA-tool, an HMM tool to find new enzymes



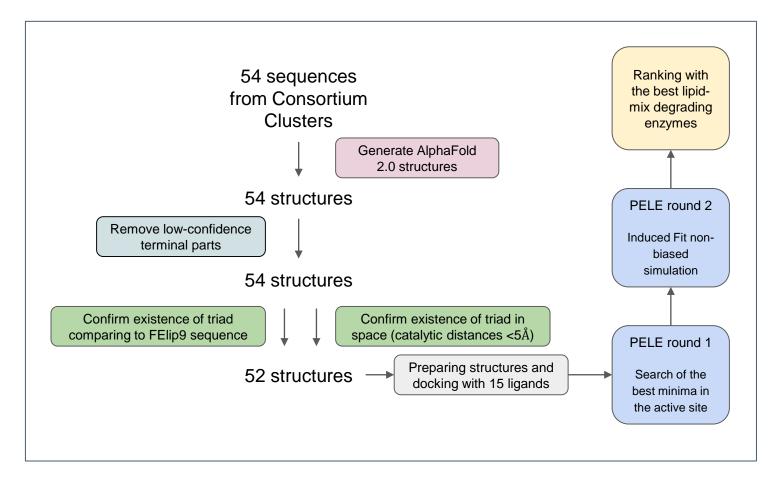
Progress undertaken and outputs achieved M18-M24

- Pre-selecting candidate sequences through extensive homology search
 - Second round of the iterative bioprospecting
 - 2 Lipases from the MarDB database (WP_054709477.1_MMP00000377; MTH54922.1_MMP13326190)
 - 2 Lipases from UHAM metagenomes (k127_15135326_1; k127_129897_3)
 - 13 Lipases from UNIPROT database (A0A1Q5DFC1, A0A5J6FBP2, A0A7X0G2Z7, A0A4R4W4R8, A0A7K3AES8, A0A7W0VIT6, A0A1K1R0A5, A0A2S6PTK3, A0A810NRQ6, A0A4P7DGE7, A0A1S2R3C1, A0A117RE37, and A0A4R6SGI7)



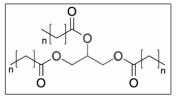
Progress undertaken and outputs achieved M18-M24

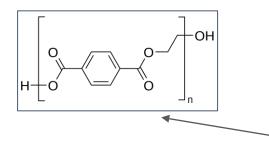
Lip9 bioprospecting in UNIPROT database



Progress undertaken and outputs achieved M18-M24

• Lip9 bioprospecting in the consortium database


12

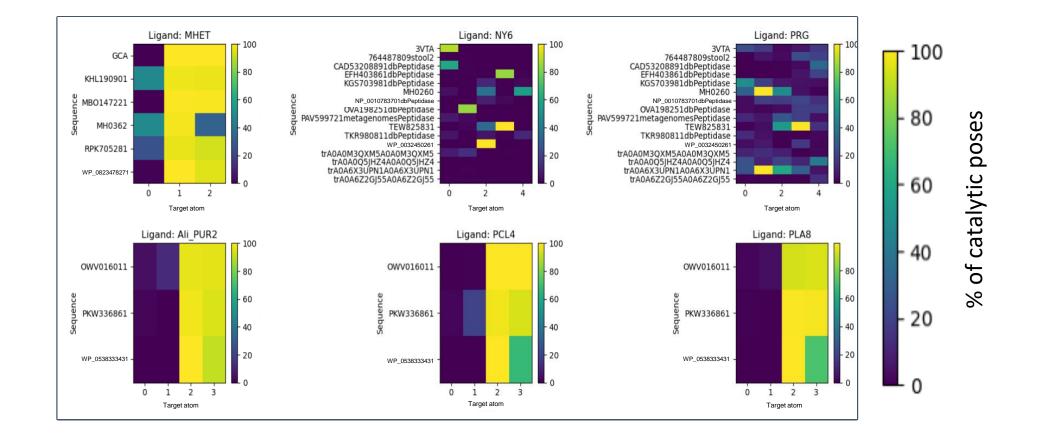

Progress undertaken and outputs achieved M18-M24

Polyethylene terephthalate (PET) tetramer

Ligand name	Identification
U10	C10:0
U12	C12:0
GMY	C14:0
U16	C16:0
I16	C16:1
U17	C17:0
U18	C18:0
I18/TOL	C18:1
D18	C18:2
T18	C18:3
PT4	PET tetramer

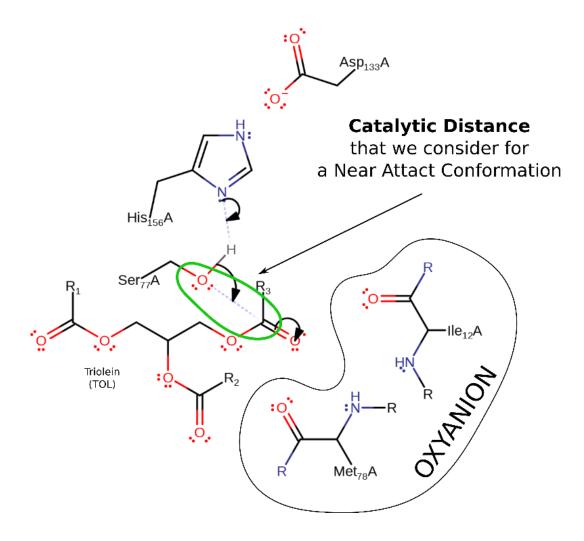
Ligands used in simulations

Triglycerides are commonly found in many natural oils and fats and are often used as substrates in enzymatic assays for lipases and esterases. As Lip9 can degrade PET, we also simulate PET tetramers.

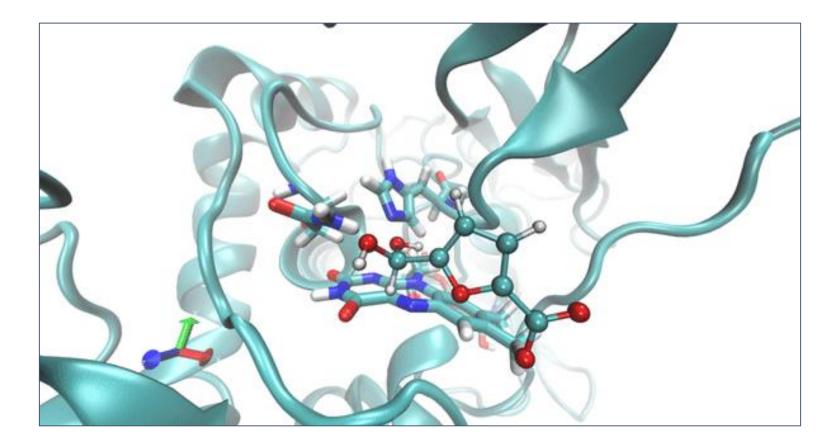


13

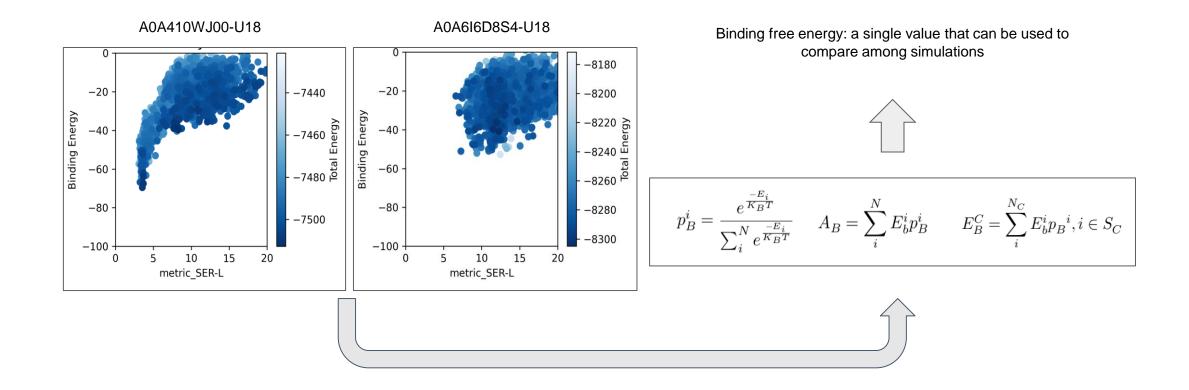
Progress undertaken and outputs achieved M18-M24

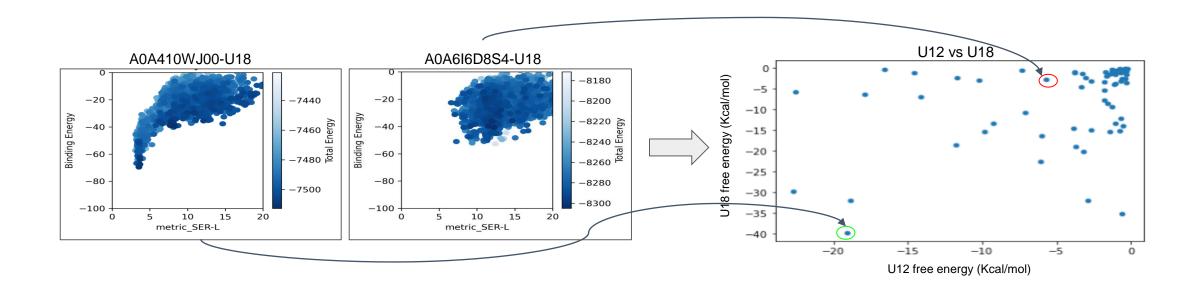

• Examples of simulations of sequences selected in Task 2.2

Progress undertaken and outputs achieved M18-M24



Progress undertaken and outputs achieved M18-M24


• PELE Induced Fit Simulations of Substrate/Active site interaction


Progress undertaken and outputs achieved M18-M24

Progress undertaken and outputs achieved M18-M24

Progress undertaken and outputs achieved M18-M24

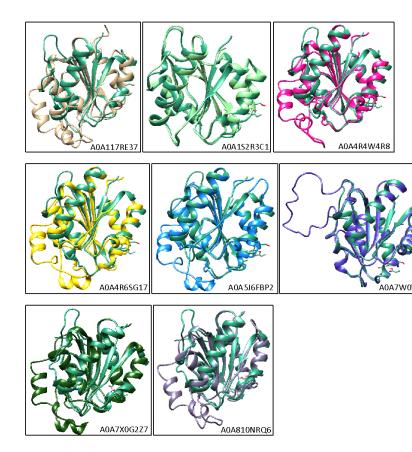
13 selected esterases ~

For medium and large triglycerides, selected candidates should bind all the ligands in the subgroup and bind the best one specific ligand.

For PET, the candidates which best bind that ligand were selected.

Target	Seq_id (UNIPROT)	Sequence	Source	Lineage	Organism	num aa	Lid	_domain
Medium_TG	A0A1Q5DFC1	MRRRLPRR	Bacteria	Actinobacteria	Streptomyces sp. CB02058	246	Loop	
Medium_TG	A0A5J6FBP2	MRRRSPRR	Bacteria	Actinobacteria	Streptomyces nitrosporeus	246	Loop	
Medium_TG	A0A7X0G2Z7	MRKALGSLV	Bacteria	Actinobacteria	Actinomadura coerulea	223	Loop	
Medium_TG	A0A4R4W4R8	MRGTRLFV1	Bacteria	Actinobacteria	Saccharopolyspora terrae	221	Loop	
Medium_TG	A0A7K3AES8	MGSTPRRS	Bacteria	Actinobacteria	Streptomyces sp. SID8379	252	Loop	
_arge_TG	A0A7W0VIT6	MPSLLALVA	Bacteria	Proteobacteria	Deltaproteobacteria bacterium	251	Loop	
Large_TG	A0A1K1R0A5	MVAHSMGG	Bacteria	Firmicutes	Paenibacillus sp. UNCCL117	96	None (small protein)
Large_TG	A0A2S6PTK3	MRRRSPRR	Bacteria	Actinobacteria	Streptomyces sp. QL37	250	Loop	
Large_TG	A0A810NRQ6	MRKTAGLLS	Bacteria	Actinobacteria	Catellatospora sp. IY07-71	224	Loop	
Large_TG	A0A4P7DGE7	MRRRSPRR	Bacteria	Actinobacteria	Streptomyces sp. S501	248	Loop	
PET /	A0A1S2R3C1	MKNNRLLLS	Bacteria	Firmicutes	Bacillus sp. MUM 13	212	None (FELip9-like)
PET /	A0A117RE37	MQRSRRRIA	Bacteria	Actinobacteria	Streptomyces griseoruber	228	Loop	
PET	A0A4R6SGI7	MRRILGIVAA	Bacteria	Actinobacteria	Labedaea rhizosphaerae	220	Loop	

Progress undertaken and outputs achieved M18-M24


			1	10	20	30	40	50	60	70	80	90	100	110	120	130
Too similar		001105DFC1 007850FTK3 007850F82 007850F82 007506F82 007506F82 0074865G17 0074865G17 0074865G17 00748741488 00781018283 0074049176 00715283 Lip9 00714818045 Consensus	HRRF MRRF MGSTPRF	RSPRRLLG SPRRLLG SPRRLLG SPRRLLG	SYLASAAYALTI SYLAAYTYASSI SYLAAGAYAFTI SALASAAIAFTI	LLSSAPT-A LFSAAPT-A LFSSATTTA LFSPASA-A MR MR MQRSRRR CSSAGEATP	GAAETARPYEA GAAPAATTA GAADTA-ATT GAAEYPA KALGSLYALLA MRRILGIYAA GTRLFYTAALA KTAGLLSYLAA IATYLTAYVSS DATMSDGSPIA LSLTACLAIIF	NAAAAQPAGTA IARATTQSAA IARATTQSAA IARSSYSSSASA IARAAFGYGLA INAALYLAPYG IAATSLPLTAG IVAANLYTTPS ILLLSLSLSAP SAATIHPSDSI	APLSTST AQPLSTST AQPLSTST PAQAAGPRI TAHAAGHTT PATAVERN AQAADRD TAQAADRD TAQAATHH TT—YEFA KASASTHD PDPHAEHN	VVFVHGYTGNAS PVVFVHGYTGNAS PVVFVHGYTGNAS PVVFVHGYTGNAS PVVFVHGYTGNAS PVVFVHGYTGNAS PVVFVHGYGGAS PVVFVHGXGGAS PVVFVHGLSSDS PILLVHGLSSDS PILLVHGLSSDS PUFFHGASAS PVVFVHGLSSDS PUFFHGASAS PVVFVHGLSSDS PUFFHGASS PVVFVHGLSSS PVVFVH	NHYTAMSVF NHYTAMSVF NHYTAMSVF NHYTAMSVF NHYTAMSVF NHTAEAVF NHNELYADF NHNDMIADF SHDDHVADF SFDALEARL NFNSIKNYLI NFFSIKSYLI	QLNGASSSKI QLNGASSSNI RANGASSSNI RANGASSSNI RAAGYSSDQI AARGYSANEI KADGAPANRI KADGAPANRI KADGAPANRI KADGAPANRI AADGAPTSRI ATQGADRNQI	FRYEYDSY FRYEYNSY FRYEYDSY FRYEYDSY FRYEYNSY TGFHYNSH TGFHYNSY TGFHYNTS FRFSYDYF DARSYSHT JGFFFPDPAH YRJEMAD-KT YRJEMAD-KT	GNNYSNAQGI GNNYTNAQGI GDNYGNARGI GDNYGNARGI GDNYGNARGI QSNKTRAAAI QSNKTTADQI QSNKTTADQI QSNKTTADQI QSNKTTAGQI GCNYDNAGRI GNSLNNARQI GNNRNNGPRI	ASFVNNVKSR ASFVSTVKSR ASFVDNVKSR ASFVDNVKSR ASFVNQVKSR SRVVDVLAR RSVVDSVRAQ ATQVKNVLAR EEDHVDMIIAT APFVDEVLKK SRFVKDVLDK	ATGASKY ATGASKY ATGASKY ATGASKY ATGASQY ATGASQY ATGATEA ATGATEA ATGADKY ATGADKY ATGADKY ATGASKI ATGASKY ATGAKKY
			131	140	150	160	170	180	190	200	210	220	230	240	250	260
	A A A A A A A A A A A A A A	00000000000000000000000000000000000000	AIVNHSI AIVNHSI AIVNHSI DIVNHSI DIVNHSI DIVNHSI DIVHSI DIVAHSI DIVAHSI DIVAHSI MVAHSI	IGGLYSQY IGGLYSQY IGGLYSQY IGGLYSQY IGGLYSQY IGGLYSDH IGGLNSRH IGGLNSRH IGGLSRRY IGTLSSRH IGGANSLY IGGANSLY	(YLKYLGGSTS) (YLKYLGGNTS) (YLKYLGGNS) (YLKYLGGNS) (YLKYLGGNS) (YLKFYGGADE) (YLKFYGGADE) (YLKFNGGTSY) (YLKNLGGAGS) (YILN-GGGSK) (YILN-GGGSK) (YILNGGATS)	VSHLASIAG VSHLASIAG VSHLASIAG VAHLASIAG VAHLASIAG VDHVSLAG VDDFVSVAG VDDFVSVAG VARYITLGG VHDVVTLGS VSKLVTLGG	ANHGTTFASAC ANHGTTFASAC ANHGTTFASAC ANHGTTFASAC ANHGTTFASAC PNHGTTSANSC PNHGTNLTPVC VNHGTSVASAC MHHGLSSSCLA PNKFIT ANGLVS	L-IYTTCQ L-IYTTCQ L-IYTTCQ L-IYTTCQ L-IYTTCQ L-YNYSCQ C-FDASCV SHLITSCA SHLYTSCA TFPGAPCVHR	QHYPGSSFJ QHYPGSSFJ QHYPGSSFJ QHYPGSSFJ QHLPGSSFJ CHLPGSSFJ CHLPGSSFJ CHRPGSSFJ CHRPGSSFJ CHCCTGGSFJ CLCCTGGDFJ	ISQITSGDETPGG ISQITSGDETPGS ISQISGDETPGS ISQISGDETPGS IGQISGGDETPGS IGQISGGDETPGS IGQISGGDETPGS ISQI	DTRYATHYSA DTRYATHYSA DTRYATHYSA STRYASHYSA STRYASHYSA STRYASHYSA DTYATHYSP DYNYGTHHST DYRYQTYHSS SVSYATYHSS SVSYATYHSS TRYTSIYST CILYTSYSS STRYTSIYSA	CDGVIIPYT CDGVILPYT CDGIILPYT CDGIILPYT CDGIILPYT CDETIOPDD CDEFINPDS SDETV-PNAC SDETV-PNAC SDEIVPTNAC SDEIVPTNAC	GTRLNGATNNN GTRLDGATNNN GTRLDGATNNN GTRLDGANNNY GTRLNGATNNL GTRLNGATNNL GTRLSGARNTQ GTLLSGARNTQ GALLSGATNYG SSMLVGAENIY LSTLQGAKNYQ LSRLTGARNYL	VLCQTHIGFL VACQTHIGFL VACQTHIGFL VACQTHIGFL VACQTHIGFL VACQTHIGFL TGCITHLGFL VGCUEHAHLL VGCVSHNDHH MPGVTHVGLL ISGVDHVGLJ IHGVGHIGL IYGGVSHVELL	ADTYVLGQIA ADTIVLGQIA ADTLVLGQIA ADTLVLGQIA ADAVVLGAIA TDDGVSQDVR VSDPVSQQVR INDYGIYEQVR DDAPTYVEIK CFNSKVNALIK TSSQVKGYIK	IRFYAS IRFYAS IRFYAS IRFYAS IQFTKS IQFTKS ITFLAS ITFLAS ITFLKS IDFIQ (RYLAYP EGGLNGG (SALN
	A A A A A A A A A A A A A A	00000000000000000000000000000000000000	QL GTNSN GQNTN													

20

Progress undertaken and outputs achieved M18-M24

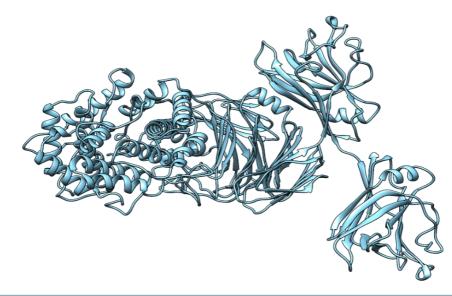
	1
Target	Seq_id (UNIPROT)
Medium_TG	A0A1Q5DFC1
Medium_TG	A0A5J6FBP2
Medium_TG	A0A7X0G2Z7
Medium_TG	A0A4R4W4R8
Medium_TG	A0A7K3AES8
Large_TG	A0A7W0VIT6
Large_TG	A0A1K1R0A5
Large_TG	A0A2S6PTK3
Large_TG	A0A810NRQ6
Large_TG	A0A4P7DGE7
PET	A0A1S2R3C1
PET	A0A117RE37
PET	A0A4R6SGI7

	discarded				
	low priority				
	good				
	best				
ranking					

(left) homologs model structures superposed to Lip9 model structure (dark green). (right) table of sequences with target substrate colored by ranking.

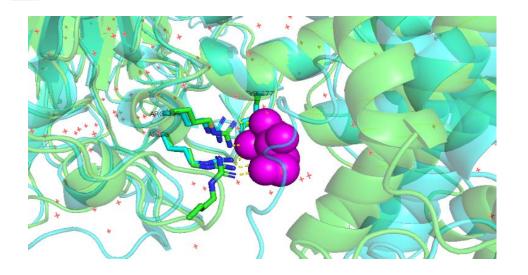
Progress undertaken and outputs achieved

- Pre-selecting candidate sequences through extensive homology search
 - Second round of the iterative bioprospecting
 - 1 Hyaluronidase, LC1Hm_4133 from partner CNR

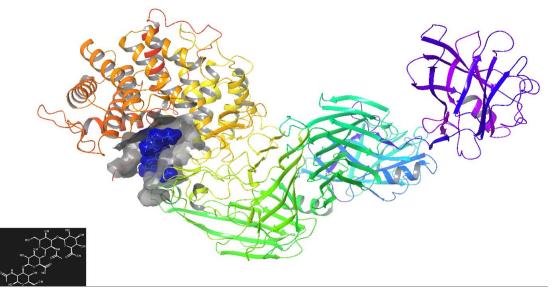

MSDGWSRRSVLKSSLGLSLAGVSLSGTTETVTGASEYETLRQRWAQLLTGGDFDATQFEYQDPLAELDETAQDHWETMDTSADRDRLWSDLPIPASSSASA SESNITDSYGRLQEMAMAYATNGSSLEDDSALVADIVDGLDFLYDRVYNEDQSQFGNWWHWEIGSPMRLVSVCALVGDELSSTQETNYTNAVGAHTGTP YEYTEYDVTSGGANRVDMCIITALRGAISGTDSTIALARDCIEESDIFQYNTSGGGNGLYRDGSYVYHKEIPYIGSYGAILLEGLGELFTVLDGTTWEITDVDHDVI YDAVGDAVAPFMYRGLMMDAVSGRSISRADQTDHVRGHGITATVLRLANTAPEPYASEFRSLAKGWIENDTWDSFLSDADVPDIANATAVLDDSTISAADE PVRHDVFHNMDRVVHNRSEWAYTISMCSERIARYEAINEENLRGWYTGAGMTQLYNDDLGHYTDGYWPTVDPYRLPGTTVDTRERSTLDGTHHPRPSTQ WVGGASVDEFGIAGMEFDAEGASLTGKKSWLHLDDTVVALGADITSSDGRPIETTVENRNLHTDGSETLTVDDTEKSTTPDWSETLTDVSWAHLDGVGGYL FPNQPTLEAKREERTGSWQEINAGGPSESLTREYQTLWLDHGVDPSAETYAYALLPGHTASETRQRSQEPGFEIVANDATVQAVTVPRLGLTAANFWSSGSI TVPGSERTLSVSGPAAVVVRHRNDELVIGVADPSRTQETVTVEYEHYTDGIVSTDSAVGVTQFRPGVTMEVAVGGTRGATHSATFDAPVTELSPRADTFVRD GSYSGDNYGSWSSLVVKGGPTGYSRESYLAFDLASVAGEVQEAVLDVYGAVTDDNGGASVDCTVAAVDDDSWTEDGLTWDTKPDLGSSLGSLTVTRERR WWREDVTEFVQTAASGDGIASVALRQPNDERYASFDSREADENPPSLRVTTSRPDTTALTPTADTFVRDGSYSGDNYGSWSSLVVKNAATDYSRQGYLTFD LSALSGSIDEAVLYLYGAVTDDSGGDAVDCAINAVGDDSWTESGLTWDTKPDLGSALGSVTVTRTPQWWTVDVTEFVQSEAGGDGVVSLAVQQPQSGLYT DFNSRDADEKVPTLRVQTS

Progress undertaken and outputs achieved M18-M24

Descriptions	Graphic Summary	Alignments	Taxonomy									
Sequences producing significant alignments Download \checkmark Select columns \checkmark Show 100 \checkmark @												
Select all 100 sequences selected <u>GenPept</u> Graphics Distance tree of results Multiple alignment MSA Viewer												
		Description			Scientific Name	Max Score		Query Cover	E value	Per. Ident	Acc. Len	Accession
polysaccharide	lyase family 8 super-sandwich	domain-containing pro	tein [Halomicrobium r	mukohataei]	Halomicrobium	2242	2242	100%	0.0	98.14%	1131	WP_170092924.1
polysaccharide	lyase family 8 super-sandwich	domain-containing pro	<u>tein [Halomicrobium r</u>	<u>nukohataei]</u>	Halomicrobium	2217	2217	100%	0.0	96.73%	1131	WP_012807407.1
polysaccharide	lyase family 8 super-sandwich	domain-containing pro	tein [Halomicrobium k	<u>katesii]</u>	Halomicrobium	2189	2189	99%	0.0	96.61%	1122	WP_245545428.1
polysaccharide	lyase 8 family protein [Halomic	<u>crobium sp. LC1Hm]</u>			Halomicrobium	1312	1312	56%	0.0	100.00%	642	WP_255318051.1

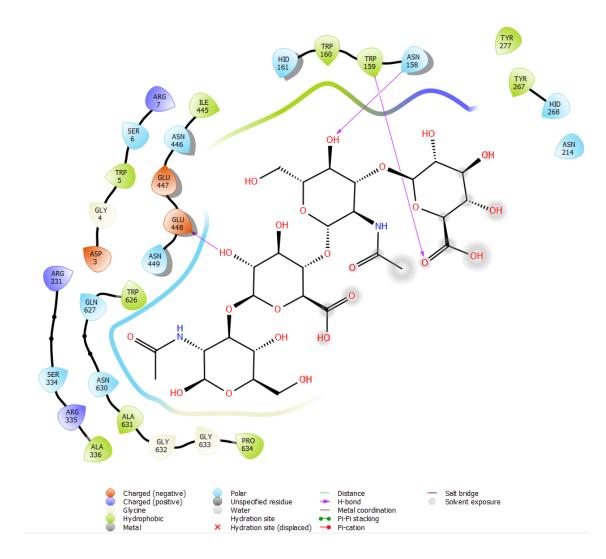


The model obtained this time is created with alphafold2 directly from blast page.


When performing a swissmodel calculation, the template obtained is <u>2e24.1</u> Xanthan lyase, another similar template 2e22.1 has a mannose residue inside the crystal.

Progress undertaken and outputs achieved M18-M24

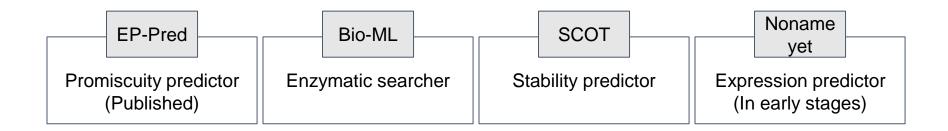
We performed a docking (swissdock) with hyaluronic acid obtained from chemspider directed against residue Arg331 atom Ccz with a 10 angstroms window. As the protein is too much big, we use only the first domain (450 aa). We aligned the crystal with the mannose and the model of LC1Hm_4133 to see which amino acids are in contact with the substrate. 2e22.1 is represented in green, LC1Hm_4133 is represented in blue and mannose is represented in magenta spheres. We also show the polar contacts between mannose and the residues from both enzymes that are shown is sticks.



Progress undertaken and outputs achieved M18-M24

We conclude that LC1Hm_4133 is a good sequence but we suggest to cut the sequence in Val799.

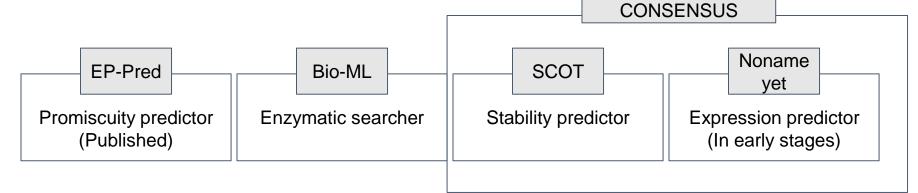
Progress undertaken and outputs achieved M18-M24


- Machine Learning methods for enzyme bioprospecting
 - Ever growing databases that are waiting to be explored and too much for experimental testing
 - We are not only interested in function which can be inferred from homology comparisons but also properties like thermostability, substrate specificity, etc.
 - Several examples like Soluprot or DeepLoc as tools that can increase the success of bioprospecting

Progress undertaken and outputs achieved M18-M24

• Machine Learning methods for enzyme bioprospecting

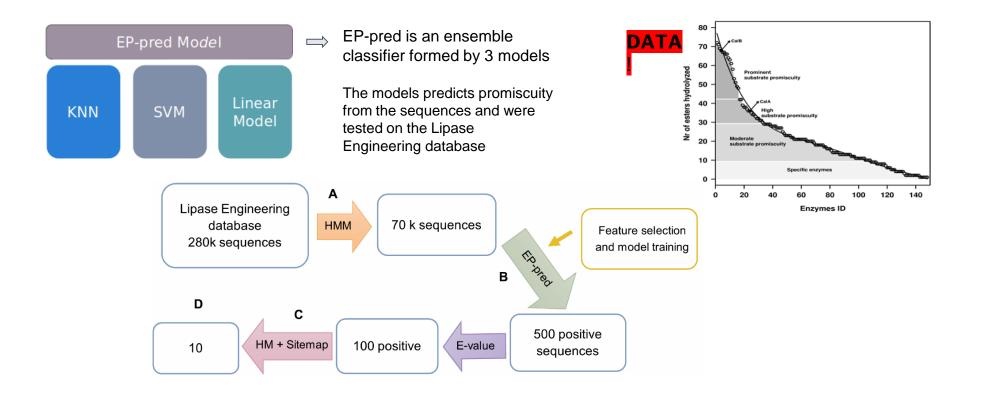
Ruite Xiang


José María Romero

Progress undertaken and outputs achieved M18-M24

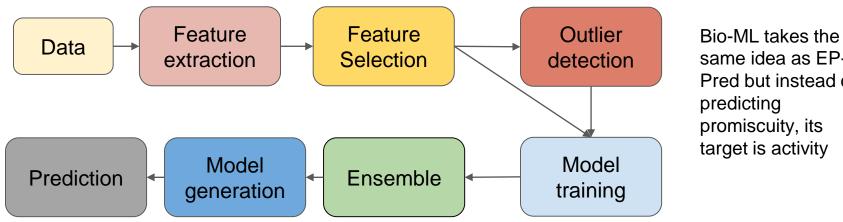
• Machine Learning methods for enzyme bioprospecting

Ruite Xiang


José María Romero

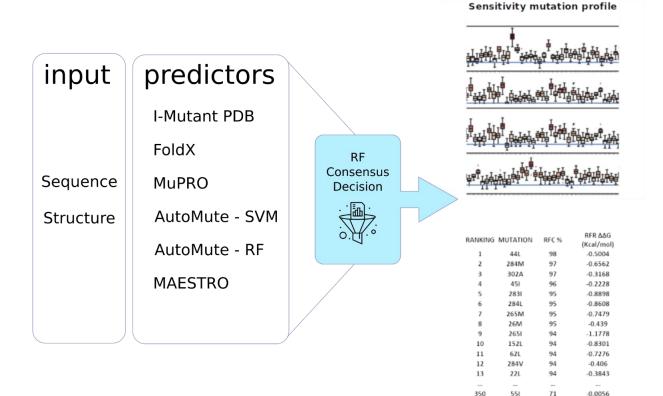
Progress undertaken and outputs achieved M18-M24

EP-Pred: A Machine Learning Tool for Bioprospecting Promiscuous Ester Hydrolases


Biomolecules. 2022 Oct 21;12(10):1529

Progress undertaken and outputs achieved M18-M24

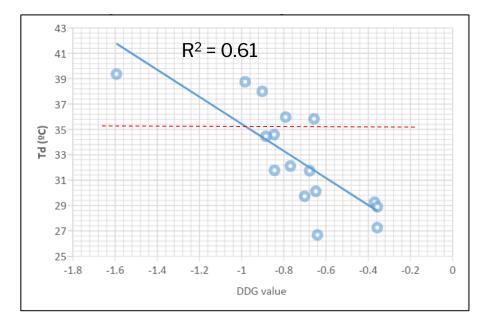
Bio-ML: A Machine Learning Tool for Bioprospecting Enzymes with specific activities


same idea as EP-Pred but instead of promiscuity, its target is activity

 $\langle \rangle$

Progress undertaken and outputs achieved M18-M24

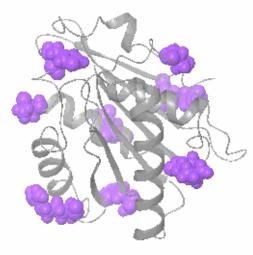
SCOT: Stability COnsensus Metapredictor


- SCOT is a Random Forest based Machine Learning metapredictor that combines the estimations of already published protein stability predictors and a molecular filter to produce a more reliable result.
- Predictors: MAESTRO, AUTOMUTE-SVM and AUTOMUTE-TR, FOLDX, MUPRO and I-MUTANT.

31

Progress undertaken and outputs achieved M18-M24

SCOT: Stability COnsensus Metapredictor


- SCOT is a Random Forest based Machine Learning metapredictor that combines the estimations of already published protein stability predictors and a molecular filter to produce a more reliable result.
- Predictors: MAESTRO, AUTOMUTE-SVM and AUTOMUTE-TR, FOLDX, MUPRO and I-MUTANT.

Progress undertaken and outputs achieved M18-M24

SCOT: Stability COnsensus Metapredictor

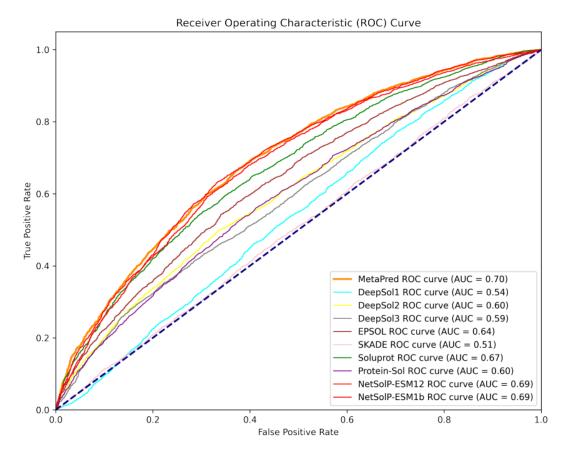
1			
	MUT	Conf. %	DDG regressor estimation
	138W	0.89	-1.57259999256581
	178L	0.89	-1.55980000313371
	138Y	0.85	-1.53439999027178
	138M	0.74	-1.69759999528527
	155L	0.82	-1.5020000040233
	99M	0.88	-1.28880002802238
	53P	0.88	-1.23099999995902
	159L	0.92	-0.98160000288859
	138V	0.6	-1.5024999842979

- SCOT is a Random Forest based Machine Learning metapredictor that combines the estimations of already published protein stability predictors and a molecular filter to produce a more reliable result.
- Predictors: MAESTRO, AUTOMUTE-SVM and AUTOMUTE-TR, FOLDX, MUPRO and I-MUTANT.

•

 $\langle 0 \rangle$

Progress undertaken and outputs achieved M18-M24

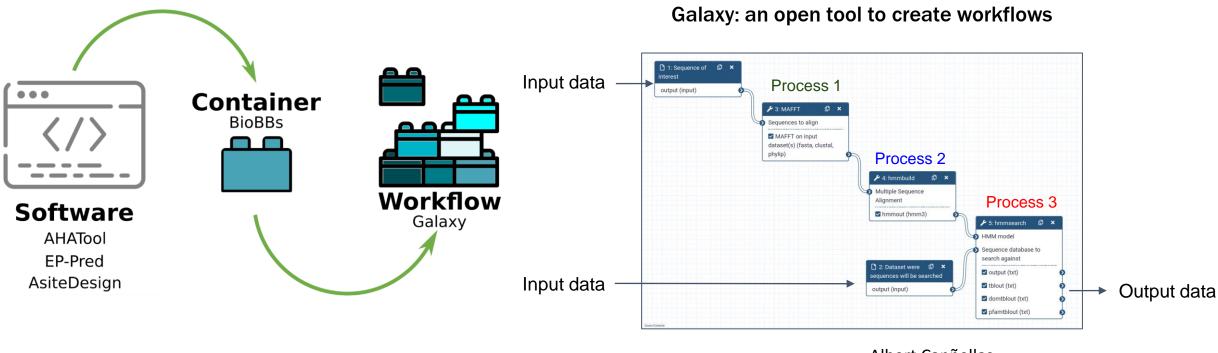

Expression Metapredictor (early stages)

We have review the state-of-the-art solubility/expression predictors:

DeepSol, EPSOL, SKADE, Soluprot, Protein-SOL and NetSolP

- XGBoost Decision Tree Consensus Model (with sequence embedding as features)
- NetSolP-esm model is based on deep learning protein language models called transformers
- Protein language model seems to be the way to go to create a more accurate sequence embedding that extract protein properties

We need More Expression/Solubility Data



Progress undertaken and outputs achieved M18-M24

Several biocontainers have already been developed for bio-prospecting and engineering, including the AHATool, EP-Pred and AsiteDesign ones.

Albert Canñellas

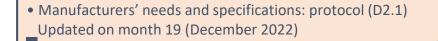
Progress undertaken and outputs achieved M18-M24

Event 7 host in BSC

On the 22nd and 23rd of may, we had the privilege to host the First BSC workshop on Computational Enzyme Bioprospecting and Engineering

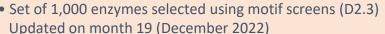
36

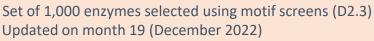
Conclusions

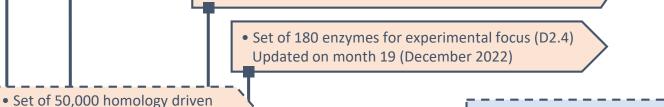


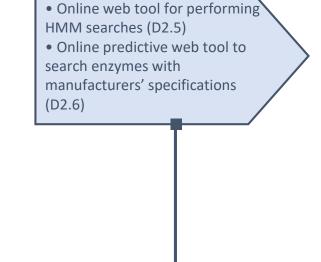
Key bullet points (scientific)

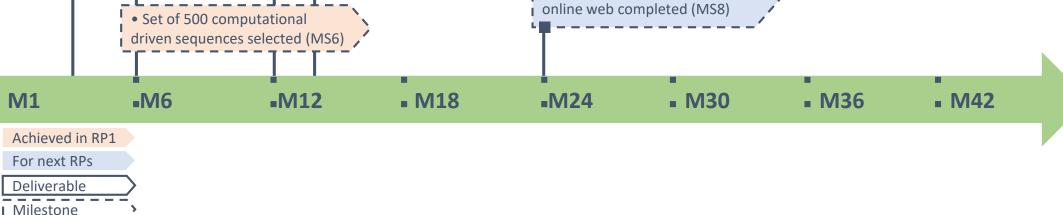
- Joint efforts are being made to design an intelligent bioprospecting workflow based on iterations.
- A second bioprospecting iteration is running to find a more active and more stable lipase and active hyaluronidases than the best ones found in the first iteration.
- New predictors and bioinformatic tools are being developed, and parallely, with efforts to make them available through both biocontainers and web servers.


WP2 – Deliverables and milestones




sequences pre-selected (MS5)


• Set of 250,000 sequences pre-selected (D2.2) Updated on month 19 (December 2022)


• Set of 1,000 enzymes selected using motif screens (D2.3)

FuturEnzyme

• First version of the HMM online

• First version of the predictive

web completed (MS7)

M48

WP2 - Expected and achieved outputs

Key bullet points

- Key bullet points (non-scientific)
 - A total of 16.62 P/M (out of 51 total, a 32.59%) at M18.
 - The work plan is proceeding as planned (see Table 2.1)

Table 2.1. Brief summary of clear and measurable details and achievements in WP2 (as in the GA)

Name of activity	Achieved	Achievement (%)	Status
1 Protocol with manufacturers' needs & specifications (D2.1)	Yes	100%	Completed
250,000 Sequences pre-selected (D2.2)	Yes	1300%	Open
1,000 Enzymes selected using motif screens (D2.3)	Yes	140%	Open
180 Enzymes for experimental focus (D2.4)	Yes	377%	Open
Online web tool for performing HMM searches (D2.5)	Partially	40%	Open
Online predictive web tool to search project enzymes (D2.6)	Partially	20%	Open
Deliverables (4, at M24)	Yes	100%	Completed
Milestones (4, at M18)	Yes	100%	Completed

WP2 – Future actions

 \odot

Future actions (six months ahead)

- Continue new rounds of enzyme bio-prospecting, if needed
- Integrate meta-data to find correlations between computationally predicted parameters and enzyme parameters, and further integrate the different bio-containers being developed into a graphical web application (Galaxy already ongoing), to guide robust pre-selection based on those calculations.

Deviations

No deviations found in the activities planned in the GA, and no mitigation actions are required.

41

Highlights

No criticisms or concerns.

42

WP2 – Machine learning enzyme bio-prospecting integrated into an industrial context

FuturEnzyme Technologies of the FUTURe for low-cost ENZYMEs for environment-friendly products

FuturEnzyme: 2nd annual meeting Start date: 1 June 2021 - End date: 31 May 2025 Proposal number: 101000327 - Consortium: 16 partners Requested EU Contribution: 5,995,035.13 €

Project funded by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No [101000327]